public class LongestCommonSubsequence3 { public static void main(String[] args) { LongestCommonSubsequence3 lcs = new LongestCommonSubsequence3(); System.out.println(lcs.compute("ABCBDAB","BDCABA")); } public static int compute(char[] str1, char[] str2) { int substringLength1 = str1.length; int substringLength2 = str2.length; // 构造二维数组记录子问题A[i]和B[j]的LCS的长度,默认初始化为0 int[][] chess = new int[substringLength1 + 1][substringLength2 + 1]; // 从从前到后,动态规划计算所有子问题。也可从前向后 for (int i = 1; i <= substringLength1; i++) { for (int j = 1; j <= substringLength2; j++) { if (str1[i - 1] == str2[j - 1]) chess[i][j] = chess[i - 1][j - 1] + 1;// 状态转移方程 else chess[i][j] = Math.max(chess[i - 1][j], chess[i][j - 1]);// 状态转移方程 } } System.out.println("substring1:" + new String(str1)); System.out.println("substring2:" + new String(str2)); System.out.print("LCS:"); int i = str1.length, j = str2.length; String temp = ""; while (i != 0 && j != 0) { if (str1[i - 1] == str2[j - 1]) { temp += str1[i - 1]; i--; j--; } else{ if (chess[i][j - 1] > chess[i - 1][j]) j--; else i--; } } for (int k = temp.length() - 1; k >= 0; k--) { System.out.print(temp.toCharArray()[k]); } System.out.println(); return chess[str1.length][str2.length]; } public int compute(String str1, String str2) { return compute(str1.toCharArray(), str2.toCharArray()); }}//================public class LongestCommonSubsequence2 { public static void main(String[] args) { LongestCommonSubsequence2 lcs = new LongestCommonSubsequence2(); System.out.println(lcs.compute("ABCBDAB","BDCABA")); } public static int compute(char[] str1, char[] str2) { int substringLength1 = str1.length; int substringLength2 = str2.length; // 构造二维数组记录子问题A[i]和B[j]的LCS的长度 int[][] opt = new int[substringLength1 + 1][substringLength2 + 1]; // 从后向前,动态规划计算所有子问题。也可从前到后。 for (int i = substringLength1 - 1; i >= 0; i--) { for (int j = substringLength2 - 1; j >= 0; j--) { if (str1[i] == str2[j]) opt[i][j] = opt[i + 1][j + 1] + 1;// 状态转移方程 else opt[i][j] = Math.max(opt[i + 1][j], opt[i][j + 1]);// 状态转移方程 } } System.out.println("substring1:" + new String(str1)); System.out.println("substring2:" + new String(str2)); System.out.print("LCS:"); int i = 0, j = 0; while (i < substringLength1 && j < substringLength2) { if (str1[i] == str2[j]) { System.out.print(str1[i]); i++; j++; } else if (opt[i + 1][j] >= opt[i][j + 1]) i++; else j++; } System.out.println(); return opt[0][0]; } public int compute(String str1, String str2) { return compute(str1.toCharArray(), str2.toCharArray()); }}//====================package com.lifeibigdata.algorithms.string;/** * Created by lifei on 16/5/25. */public class LongestCommonSubsequence { public static void main(String[] args) { char[] x = {' ','A','B','C','B','D','A','B'}; char[] y = {' ','B','D','C','A','B','A'}; LongestCommonSubsequence lcs = new LongestCommonSubsequence(); lcs.printLCS(lcs.lcsLength(x, y), x, x.length-1, y.length-1); } void printLCS(int[][] b,char[] x,int i,int j){ if(i == 0 || j == 0) return; if(b[i][j] == 1){ printLCS(b,x,i - 1,j - 1); System.out.print(x[i] + "\t"); }else if(b[i][j] == 2) printLCS(b,x,i - 1,j); else printLCS(b,x,i,j - 1); } int[][] lcsLength(char[] x,char[] y){ int m = x.length; int n = y.length; int i,j; int[][] c = new int[m][n]; int[][] b = new int[m][n]; for(i = 1;i < m;i++) c[i][0] = 0; for(j = 0;j < n;j++) c[0][j] = 0; for(i = 1;i < m;i++) for(j = 1;j < n;j++){ if(x[i] == y[j]){ c[i][j] = c[i - 1][j - 1] + 1; b[i][j] = 1; } else if(c[i - 1][j] >= c[i][j - 1]){ c[i][j] = c[i - 1][j]; b[i][j] = 2; }else{ c[i][j] = c[i][j - 1]; b[i][j] = 3; } } return b; }}/** * 滚动数组只求大小,可以降低空间复杂度,时间复杂度不变 * 求全部的lcs,使用深搜或广搜 * 求有几个lcs,即只求lcs数目,计算有多少分支,即2的多少次方 * * */